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The stability analysis for periodic motions of a class of harmonically excited
single degree of freedom oscillators with piecewise linear characteristics is
presented. The common characteristic of these oscillators is that they possess
viscous and constant damping properties, which depend on their velocity
direction. The presence of constant damping terms in the equation of motion
introduces acceleration discontinuities and makes possible the appearance of finite
time intervals within the periodic solution where the oscillator is stuck at the same
position. Harmonic and subharmonic motions with an arbitrary number of
solution pieces are examined. The analysis takes advantage of the fact that the
exact solution form for any solution piece included between two consecutive zero
velocity values is known. It is based on the derivation of a matrix relation which
determines how an arbitrary but small perturbation at the beginning of a periodic
solution propagates to the end of a response period. Then, results obtained by
bifurcation analysis of the periodic solutions are also presented. At the end, some
of the analytical predictions are confirmed by considering an example mechanical
model.
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1. INTRODUCTION

The class of mechanical systems examined in the present study is modelled by
single degree of freedom oscillators with parameter and motion discontinuities.
Such discontinuities appear frequently in practice as a result of clearances, motion
limiting constraints and impacts (e.g., [1–6]) or due to the presence of dry friction
[6–10] and viscous damping properties depending on the velocity direction [11, 12].
In the former case, a discontinuity in the system stiffness and/or damping
coefficients occurs when the system reaches certain critical displacement values. On
the other hand, in the latter case a discontinuity may appear when the velocity
of the system becomes zero. Due to the motion constraints, the equations of
motion of both of these categories of mechanical oscillators appear in a strongly
nonlinear form. As a result, their dynamic behaviour can be captured only after
application of special analytical, numerical and experimental techniques.
Moreover, this behaviour can be quite interesting, as was demonstrated by several
previous relevant studies (e.g., [1–10]). More specifically, the response of these
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systems under periodic external excitation is expected to be periodic. However, for
some parameter combinations, existing periodic solutions may lose stability and
give their place to quasiperiodic or chaotic response. This leads to difficulties in
predicting and understanding the system dynamics, which in turn causes
complications at their design stage.

The main objective of this study is to present an appropriate stability analysis
for periodic solutions of harmonically excited piecewise linear systems with dry
friction and damping coefficients depending on the velocity direction. The
presentation follows closely a previous work [4], developed for similar systems but
with displacement constraints. Apart from the differences caused in the
formulation by the velocity constraints, another important difference is that these
systems may exhibit sticking motions, which are not observed in systems with
displacement constraints. The method exploits the fact that the exact solution
between two consecutive instances of zero velocity is known. The specifics of the
mechanical model and the solution form within each time interval are presented
in the following section. In the third section, the stability is presented for periodic
motions with an arbitrary number of solution pieces, which may involve several
sticking intervals. This is done by developing a systematic methodology, which
determines the evolution of a small deviation from a periodic solution over a single
response period. Based on this analysis, some quite general bifurcation analysis
is also performed and presented in the fourth section. In the fifth section, an
example mechanical oscillator is considered and some numerical results are
obtained, which are in accord with the analytical predictions. The final section
summarizes the highlights of the work.

2. MECHANICAL MODEL—SOLUTION FORM

The equation of motion of the class of dynamical systems examined has the form

mẍ+ g(ẋ, x)= f sin (Vt+8). (1)

The characteristic of these systems is that their damping and stiffness properties
may change any time their velocity crosses the zero value. Namely, if ti−1 and ti

denote two consecutive times where the velocity becomes zero (these time instances
will be referred to as ‘crossing times’ in the following), then within that time
interval

g(ẋ, x)= ciẋ+ kix+ hi . (2)

Clearly, this class of oscillators is quite general and includes many other important
classes of oscillators, like those with classical Coulomb friction, as special cases.

In order to facilitate the analysis, the original equation of motion (1) is put in
a convenient normalized form, by introducing the notation

u=Vt, u
 i =Vti , ui = u− u
 i−1, 8̂i =8+ u
 i−1, yi (ui )= x(t− ti−1)/xc,
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where xc represents a characteristic length of the system. Then, equation (1) is
replaced by

ÿi +2di ẏi +v2
i yi = p sin (ui + 8̂i )+v2

i fi , (3)

with

v̄i =Xki

m
, vi =

v̄i

V
, zi =

ci

2zkim
, di = zivi ,

p=
f

mV2xc
, fi =

−hi

kixc
.

The analysis presented here is based on the fact that the exact solution form of
equation (3) within the time interval 0E ui E uic, with

uic 0 u
 i − u
 i−1,

is known. Namely, if the motion is non-sticking (and underdamped), then

yi (ui )= e−diui[Ai sin (hiui )+Bi cos (hiui )]+Pi sin (ui + ai )+ fi , (4)

with

hi =zv2
i − d2

i , Pi =
p

z(v2
i −1)2 +4d2

i

, ai = 8̂i −8i

and phase angle determined by the expressions

cos 8i =
v2

i −1
z(v2

i −1)2 +4d2
i

, sin 8i =
2di

z(v2
i −1)2 +4d2

i

.

On the other hand, when the oscillator is stuck within the time interval 0E ui E uic,
equation (3) determines the corresponding friction force in the form

fi = yi −P
 i sin (ui + 8̂i ), (5)

with

P
 i = p/v2
i .

The dynamical systems examined are expected to exhibit periodic steady state
response, among other possible response types. For general n-periodic motions
consisting of k pieces—with several non-sticking and/or sticking intervals—(see
Figure 1 for an example), the unknowns of the problem are the constants Ai , Bi

and the crossing times u
 i of each interval, together with the phase 8. As usual,
this phase is introduced in the forcing function so that the motion starts at a point
of zero velocity. In any particular application, the unknowns can in principle be
determined by imposing an appropriate set of periodicity and matching conditions
(see the example in section 5). These conditions lead to an equal number of
transcendental equations, whose solution determines the unknown constants and
crossing times characterizing the periodic solution considered (e.g., [1–3, 7–9]).
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Figure 1. Typical periodic motion of the system examined.

In the following two sections it is assumed that a periodic solution of the system
examined, with an arbitrary number of solution pieces, has been located. The
emphasis is first placed on developing an appropriate analytical methodology for
determining the stability properties of this solution. Then, some bifurcation results
are also presented, helping in the efforts to investigate the way these properties
change and the types of the resulting solutions, as the system parameters are
varied.

3. STABILITY OF PERIODIC MOTIONS

Knowledge of the stability properties of the solutions of a dynamical system is
of fundamental importance, since only stable solutions are observable in practice.
Due to the presence of discontinuities in the equations of motion, the stability
characteristics of a located periodic motion of the systems examined cannot be
revealed by employing the classical linearization methods [13]. An alternative way
to perform the stability analysis is to apply an equivalent methodology, which is
more suitable for piecewise linear dynamical systems. According to this method,
arbitrary but small perturbations are first introduced into initial conditions leading
to a periodic motion. Then, employing the exact solution form within the various
pieces of the motion it is determined whether these perturbations grow or diminish
with time [1, 4].

In the present case, a periodic motion consists of time intervals where the system
has non-zero velocity and may also involve several finite time intervals where the
oscillator is stuck at the same position. For this reason, before the complete
stability analysis of a periodic motion is performed, a typical non-sticking and then
a sticking motion interval (as shown in Figures 2 and 3, respectively) are analyzed
separately.

First, for a non-sticking part of the motion assume that it starts with initial
conditions

yi (0)= ŷi−1, ẏi (0)=0. (6)
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Figure 2. Exact and perturbed non-sticking interval of a periodic motion.

Then, the corresponding unknown coefficients in equation (4) are determined in
the form

Ai =
1
hi

[di (ŷi−1 − fi −Pi sin ai )−Pi cos ai ], Bi = ŷi−1 − fi −Pi sin ai . (7a, b)

Next, define the new time variable u�i = ui −Dui−1 and consider the new solution
ȳi (u�i ), resulting from the neighbouring initial conditions

ȳi (0)= ŷi−1 +Dŷi−1, ȳ�i (0)=0 (8)

(see Figure 2). This solution has the form

ȳi (u�i )= e−diu�i[A� i sin (hiu�i )+B� i cos (hiu�i )]+Pi sin (u�i +Dui−1 + ai )+ fi . (9)

Figure 3. Exact and perturbed sticking interval of a periodic motion.
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If the original perturbations Dui−1 and Dŷi−1 are small, it is expected that the
following relations hold:

A� i =Ai +
1Ai

1ŷi−1
Dŷi−1 +

1Ai

1u
 i−1
Dui−1, B� i =Bi +

1Bi

1ŷi−1
Dŷi−1 +

1Bi

1u
 i−1
Dui−1 .

Then, by employing equation (7a), it can easily be shown that

1Ai

1ŷi−1
=

di

hi
0Ui ,

1Ai

1u
 i−1
=

Pi

hi
(sin ai − di cos ai )0Vi (10)

Likewise, direct differentiation of equation (7b) yields

1Bi /1ŷi−1 =1, 1Bi /1u
 i−1 =−Pi cos ai 0Wi . (11)

Next, it is assumed that the velocity of the perturbed solution ȳi (u�i ) will become
zero at a new time u�ic = uic +DTi−1, with DTi−1 0Dui −Dui−1. This means that
the perturbed solution satisfies the conditions

ȳi (u�ic)= ŷi +Dŷi , ȳ�i (u�ic)=0. (12a, b)

Using the definitions si =sin (hiuic), si =cos (hiuic), ei =e−diuic and expanding
equation (12a) in Taylor series, by omitting second and higher order terms, results
in the relation

ei (1− diDTi−1)[(Ai +UiDŷi−1 +ViDui−1)(si + hisiDTi−1)

+(Bi +Dŷi−1 +WiDui−1)(si − hisiDTi−1)]

+Pi [sin (uic + ai )+ cos (uic + ai )Dui ]+ fi = ŷi +Dŷi .

The zero order terms in the last expression cancel out, since they satisfy the
condition yi (uic)= ŷi , while the first order terms can be put in the form

ri1DTi−1 + ri2Dŷi−1 + ri3Dui−1 =Dŷi (13)

with

ri1 = ei [hi (siAi − siBi )− di (siAi + siBi )]+Pi cos (uic + ai )= ẏi (uic)=0,

ri2 = ei (si + siUi ), ri3 = ei (siWi + siVi )+Pi cos (uic + ai ).

Upon proceeding in a similar fashion, condition (12b) yields eventually the relation

ri4DTi−1 + ri5Dŷi−1 + ri6Dui−1 =0, (14)

with

ri4 = di (diBi − ciAi )− hi (diAi + ciBi )−Pi sin (uic + ai )= ÿi (uic)0 âi ,

ri5 = ciUi − di , ri6 = ciVi − diWi −Pi sin (uic + ai ),

ci = ei (hisi − disi ), di = ei (hisi + disi ).
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Therefore, defining the vector

e� i =0Dui

Dŷi1
and combining relations (13) and (14) leads to the expression

ei =Riei−1. (15)

This expression determines the error of the solution at the end of the considered
motion interval, provided that the error at the beginning of the same interval is
known, with

Ri =$1− ri6/âi

ri3

−ri5/âi

ri2 %. (16)

The establishment of the relation between the error at the beginning and the
error at the end of an interval of a sticking motion is similar. Namely, in this case
it is true that

ŷi−1 = ŷi =P
 i sin ci + fi , (17)

with ci = u
 i +8. After the introduction of small time and displacement
perturbations (see Figure 3), this solution is found to satisfy the conditions

Dŷi =Dŷi−1, ŷi +Dŷi =P
 i sin (ci +Dci−1)+ fi . (18a, b)

Expanding equation (18b) in Taylor series and collecting the first order terms
yields Dŷi =P
 i cos ciDui , which upon employing equation (17) becomes

Dŷi =2zP
 2
i −(ŷi − fi )2Dui , (19)

with the sign determined by the quadrant of phase ci . Therefore, combining
equation (18a) with equation (19) yields a relation similar to equation (15), with

Ri =$00 21/zP
 2
i −(ŷi − fi )2

1 %. (20)

Based on the above analysis, if the motion examined is periodic with k solution
pieces, the error at the end of the first period will be related to the original error
by

ek =Pe0, (21)

after leaving out the contribution of the second and higher order terms. The matrix
P is defined as a product of k matrices, resulting from each individual time interval
of the periodic solution: i.e.,

P0Rk · · · R1. (22)
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Furthermore, upon proceeding in a similar manner, the error in an n-periodic
solution after m× n forcing cycles will be related to the original error by emk =Pme0.
This equation implies that the solution examined is asymptotically stable when
limm:a Pm =0. This requires that the eigenvalues of matrix P have modulus less
than one. On the other hand, when at least one eigenvalue of P has modulus greater
than one, the periodic solution is unstable.

4. BIFURCATION ANALYSIS

From the analysis presented in the previous section, it is obvious that all the
elements of matrix P are known functions of the system parameters. Therefore,
a change in a system parameter implies a change in the eigenvalues of matrix P.
As a consequence, if l is the eigenvalue of matrix P with the largest modulus, then
some parameter combinations may lead to =l==1, which in turn signals important
qualitative changes in the dynamics of the system examined [14]. Complete
examination and analysis of these changes requires the inclusion and study of
higher order (non-linear) terms in the relations obtained through the Taylor
expansions of equations (12) and (18).

For a general periodic solution, the condition =l==1 is usually met when l=1
(corresponding to saddle-node, pitchfork or transcritical bifurcation) or l=−1
(corresponding to period-doubling bifurcation) and the other eigenvalue is also
real and has modulus less than one. The same condition is also satisfied when the
eigenvalues of matrix P are complex conjugate with unit modulus (corresponding
to Hopf bifurcation). Derivation of conditions between the system parameters
leading to =l==1 are useful, since they establish the stability boundaries of the
system. In addition, they provide information on the types of motion expected to
arise near the bifurcation values. However, this derivation is a difficult task to
accomplish for a general periodic solution because it involves the evaluation of
both the determinant and the trace of matrix P, which is a product of k matrices.
In fact, the main difficulty is coming from developing simple formulae for the trace
of matrix P, which is possible in some relatively simple forms of periodic solutions
(e.g. [8]). Nevertheless, some quite general and useful results can be obtained by
evaluating the determinant of matrix P only, as explained next.

First, for a non-sticking interval of the periodic solution, use of equation (16)
leads to the formula

=Ri ==
1
âi

[(âi − ri6)ri2 + ri3ri5]

for the determinant of matrix Ri . Substituting the expressions of the parameters
rij—which are presented in the previous section—and performing lengthy algebraic
manipulations, finally leads to

=Ri == e2
i
âi0

âi
, (23)
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Figure 4. Velocity at a crossing time of a non-sticking periodic motion. (a) Positive acceleration;
(b) negative acceleration.

where the symbol âi0 represents the acceleration at the beginning of the ith motion
interval, namely

âi0 0 ai (0)= (d2
i − h2

i )Bi −2dihiAi −Pi sin ai .

Therefore, if all the intervals of the motion considered are non-sticking, from
equations (22) and (23) it is concluded that

=P== =Rk = · · · =R1==A exp 0−2 s
k

i=1

diuic1, (24)

with

A=
â1oâ2o · · · âko

â1â2 · · · âk
. (25)

Next, consider the special but important case of systems with dry friction and
constant stiffness (i.e., v1 =v2 0 v̂) [7–9]. With reference to the velocity diagram
of Figure 4(a)—drawn at the ith crossing point and for positive acceleration at
crossing—the equation of motion (3) just before the crossing, when the velocity
is negative, can be put in the form âi−1 = ẑi + v̂2m, where m is the coefficient of
friction and ẑi represents the sum of the external force and the spring force on the
oscillator at the ith crossing point. Similarly, the equation of motion just after the
ith crossing yields âio = ẑi − v̂2m. Combination of these last two equations leads
to the result

0Q âio = âi−1 −2v̂2mQ âi−1c 0Q âio

âi−1
Q 1.

By proceeding along the same lines, it can be shown that an identical result is
obtained for the other possible case of crossing, with negative accelerations at
crossing [Figure 4(b)]. Upon taking into account the periodicity conditions and
equation (25), this means that in the case examined 0QAQ 1. Therefore, if the
system possesses non-negative damping, it is obvious from equation (24) that
=P=Q 1. This conclusion is similar to a result presented for the class of systems
examined in reference [4] and shows that only l=1 or l=−1 bifurcations are
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possible (or, alternatively, that no Hopf bifurcation is possible) in the case
considered.

It is noted that the above result holds for systems with constant stiffness and
hi , which corresponds to oscillators with variable viscous damping coefficients
under constant external load [11, 12]. In this case, there is no discontinuity in the
acceleration between subsequent intervals of a periodic motion, since

ai (0)= ai−1(u(i−1)c)câio = âi−1, i=1, . . . , k.

In such a case, it turns out from equation (24) that

=P==exp 0−2 s
k

i=1

diuic1
which excludes Hopf bifurcation, provided that all the damping coefficients of the
system are positive.

Finally, for periodic motions involving even a single sticking interval, it is
obvious from equation (20) that the determinant of the corresponding matrix Ri

is equal to zero, which implies that the determinant of P is also equal to zero.
Therefore, one eigenvalue of P is equal to zero while the other is also real and
equal to the trace of matrix P. This implies that in this case only l=1 or l=−1
bifurcations are possible excluding, once more, the possibility of a Hopf
bifurcation.

5. MECHANICAL EXAMPLE

The analytical results presented in the previous sections are directly applicable
to mechanical systems involving variable viscous damping and dry friction. In fact,
some of these results are supported by stability and bifurcation findings reported
in earlier studies for some special periodic motions of oscillators with Coulomb
friction and constant viscous damping (e.g., [8]). In the present section, an example
system with

g(ẋ, x)=6c1ẋ+ kx,
c2ẋ+ kx,

ẋe 0
ẋQ 0

,

is considered, in order to confirm numerically that similar behaviour is also
exhibited by oscillators with variable viscous damping. For instance, equation (1)
can represent the equation of motion of a quarter-car model with dual-rate
dampers [11]. In this particular example, the stiffness remains constant and if the
road profile is harmonic, with amplitude ŝ and wavelength l, the excitation term
can be put in the form

f(t)=mŝV2 sin (Vt+8)

with V=2pv/l, where v is the constant horizontal speed of the vehicle.
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After introducing the frequency and forcing parameters v̄=zk/m, v=V/v̄,
p= ŝ/xc, and applying the normalization presented in section 2, periodic steady
state solutions of the mechanical model examined are sought, with form similar
to that shown in Figure 5. According to the material presented in section 2,
determination of such solutions requires the evaluation of six parameters (the
crossing time u
 1, the phase 8 and the four constants A1, B1, A2 and B2 of the
homogeneous solutions in the two discrete time intervals of the periodic solution
where the damping properties remain constant). As usual, these constants can be
determined by imposing an appropriate set of periodicity and matching conditions.
In the present case, the corresponding set is

ẏ1(0)= ẏ1(u
 1)= ẏ2(0)= ẏ2(u
 2)=0, (26)

y1(0)= y2(u
 2), y1(u
 1)= y2(0), (27)

with u
 2 =2pn− u
 1. Originally, direct application of these conditions leads to a
system of six transcendental equations for the six unknowns of the problem.
However, this system can effectively be reduced to a single transcendental
equation. Namely, application of the velocity conditions (26) yields first the four
constants of the homogeneous solutions in the form

An =Ans sin 8+Anc cos 8, Bn =Bns sin 8+Bnc cos 8, n=1, 2, (28)

Figure 5. Periodic motion sought for the example system.
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where the constants appearing on the right-hand sides of these equations are
known functions of the system parameters and the crossing time u
 1. Then, upon
substitution of the last expressions in the displacement conditions (27) leads to two
equations with form

$E1s

E2s

E1c

E2c%0sin 8

cos 81=0, (29)

where the constants Ens and Enc are known functions of the crossing time u
 1.
Equation (29) represents a linear homogeneous system in sin 8 and cos 8. In order
for this algebraic system to possess a non-trivial solution, its determinant must
vanish. This implies that

f(u
 1)0E1sE2c −E1cE2s =0. (30)

Therefore, numerical solution of the last condition determines the crossing time
u
 1. Then, the process of capturing the periodic solution is completed by evaluating
the corresponding phase 8 by equation (29) and the constants A1, B1, A2 and B2

from equation (28), by simple back substitutions.
Next, numerical results are presented for the example mechanical system. First,

Figure 6 shows typical response diagrams for n=1 solutions, obtained for
p̂= pv2 =1 and four different combinations of the damping parameters (z1, z2).
In the cases with z1 = z2, the system is linear and its behaviour is the expected one.
Moreover, it is clear that the most favourable case in terms of maximum response

Figure 6. Response diagrams for p̂=1 and different damping combinations.
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amplitude is obtained for (z1, z2)= (0·15, 0·45). This corresponds to the optimum
case, where the vehicle shock absorbers are dual-rate with about a three-to-one
ratio between the rebound and jounce (compression) damping coefficient,
according to usual design considerations of vehicle dynamics [11].

All the periodic solutions presented in Figure 6 are harmonic (n=1) and stable.
Next, Figure 7 shows response diagrams obtained for p=1, z2 =0·55 and several
values of the damping ratio z1. By gradually decreasing the value of z1, apart from
an increase of the response amplitude near resonance, unstable solutions are also
observed. The first unstable solutions are captured for z1 =−0·12, at about

Figure 7. Response diagrams for p=1, z2 =0·55 and (a) z1 =0·1 and −0·2, (b) z1 =−0·54, (c)
z1 =−0·55 and (d) z1 =0·56.
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Figure 8. Numerical verification of a period-doubling bifurcation. (a) v=1·22; (b) v=1·23.

v=1·87. Further decrease in the value of z1 leads to a gradual enlargement of
these solution branches, which are represented by broken lines in Figure 7. More
specifically, these branches of unstable solutions are generated through period
doubling bifurcations (l=−1) at both of their ends. As a result, this gives rise
to new branches of n=2 periodic solutions, which are also shown in Figure 7.

For the parameter combinations leading to the response diagrams sequence
presented in Figure 7, the most complex situation arose for the system with
z1 =−0·55 [Figure 7(c)]. In that case, a new branch of unstable periodic solutions
is captured between v=0·99 and 1·14. This branch is generated via Hopf
bifurcation (complex l with =l==1) occurring at both of its ends. Moreover, for
vq 2·67 the stability properties of the periodic solutions are continuously

Figure 9. Numerical verification of a Hopf bifurcation. (a) v=0·99; (b) v=0·992.
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interchanging over relatively small forcing frequency intervals. Finally, by
decreasing the value of z1 below −0·55, all the solutions occupying the branch lying
at the right of the primary resonance become unstable [Figure 7(d)].

In the last part of this section, the stability and bifurcation results associated with
the solutions of the previous figure are verified by numerical integration of the
equation of motion (3). First, Figure 8 presents the periodic solutions obtained for
z1 =0·54, at v=1·22 and 1·23, respectively. For this system, the analysis predicts
a period doubling bifurcation at about v=1·225. As a consequence, the stable
harmonic solution at v=1·22 becomes unstable and gives its place to an n=2
periodic solution at v=1·23, as expected. Likewise, Figure 9 shows the solutions
obtained by direct integration of the equation of motion (3) for z1 =−0·55, at
v=0·99 and 0·992, respectively. For this system, the originally stable harmonic
solution loses stability via a Hopf bifurcation and is replaced by a quasiperiodic
solution.

6. SYNOPSIS AND CONCLUSIONS

A stability analysis has been developed for periodic motions of a general class
of single degree of freedom oscillators with piecewise linear characteristics. More
specifically, the oscillators examined possess different viscous and constant
damping parameters for positive and for negative velocity values. These oscillators
are strongly non-linear and their response involves an arbitrary number of motion
intervals. In addition, they may exhibit several sticking intervals over a response
period. The analysis was based on the exact solution form of the response within
each time interval included between two consecutive zero velocity states. The
asymptotic stability properties of a periodic solution were identified through the
construction of an appropriate matrix, which determines the propagation of small
perturbations in the periodic solution over a response period. Eventually, simple
analytic expressions were derived for the determinant of that matrix and it was
shown that no Hopf bifurcations are possible in two special but important cases.
Namely, when the periodic motion involves at least one sticking interval or when
the motion is non-sticking and the damping coefficients are positive. Finally, some
of these analytical predictions were verified by examining the response of an
example mechanical oscillator with piecewise linear damping. In closing, it is noted
that the present analysis can be extended to cover wider classes of dynamical
systems, like mechanical oscillators with similar damping characteristics and many
degrees of freedom.
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